Counting Hyperbolic Manifolds with Bounded Diameter

نویسنده

  • ROBERT YOUNG
چکیده

Let ρn(V ) be the number of complete hyperbolic manifolds of dimension n with volume less than V . Burger, Gelander, Lubotzky, and Moses[2] showed that when n ≥ 4 there exist a, b > 0 depending on the dimension such that aV logV ≤ log ρn(V ) ≤ bV logV, for V ≫ 0. In this note, we use their methods to bound the number of hyperbolic manifolds with diameter less than d and show that the number grows double-exponentially. Additionally, this bound holds in dimension 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded Geodesics of Riemann Surfaces and Hyperbolic Manifolds

We study the set of bounded geodesies of hyperbolic manifolds. For general Riemann surfaces and for hyperbolic manifolds with some finiteness assumption on their geometry we determine its Hausdorff dimension. Some applications to diophantine approximation are included.

متن کامل

A Poisson Summation Formula and Lower Bounds for Resonances in Hyperbolic Manifolds

For convex co-compact hyperbolic manifolds of even dimension n + 1, we derive a Poisson-type formula for scattering resonances which may be regarded as a version of Selberg's trace formula for these manifolds. Using techniques of Guillop e and Zworski we easily obtain anO R n+1 lower bound for the counting function for scattering resonances together with other lower bounds for the counting func...

متن کامل

Hyperbolic Rank of Products

Generalizing a result of Brady and Farb (1998), we prove the existence of a bilipschitz embedded manifold of negative curvature bounded away from zero and dimension m1 +m2 − 1 in the product X := X1 1 ×X m2 2 of two Hadamard manifolds Xi i of dimension mi with negative curvature bounded away from zero. Combining this result with a result of Buyalo and Schroeder (2002), we prove the additivity o...

متن کامل

Asymptotics of the Length Spectrum for Hyperbolic Manifolds of Infinite Volume

We compute the leading asymptotics of the counting function for closed geodesics on a convex co-compact hyperbolic manifold in terms of spectral data and scattering resonances for the Laplacian. Our result extends classical results of Selberg for compact and nite-volume surfaces to this class of in nite-volume hyperbolic manifolds.

متن کامل

Surfaces in Three-manifolds with Hyperbolic Fundamental Group

We show that if a closed irreducible three-manifold with hyperbolic fundamental group contains a surface subgroup satisfying a certain geometric regularity assumption, then the surface is either quasiconvex or a virtual fiber. In the latter case, the manifold is hyperbolic. The regularity condition ensures that we may find algebraic bounds on the surface group which are analogous to the diamete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006